產(chǎn)品中心
關(guān)于一種新型電氣火災(zāi)預(yù)警系統(tǒng)的研究
任運業(yè)
安科瑞電氣股份有限公司 上海嘉定 201801
【摘要】針對現(xiàn)有電氣火災(zāi)預(yù)警技術(shù)存在監(jiān)測功能不夠全面以及智能決策不夠完善等問題,開發(fā)了一種新型電氣火災(zāi)預(yù)警系統(tǒng)。首先,使用多個不同類型的單參量采集模塊來采集火情現(xiàn)場數(shù)據(jù),再將采集到的數(shù)據(jù)匯集到參量匯集模塊,完成多參量采集;其次,參量匯集模塊通過兩級制數(shù)據(jù)傳輸網(wǎng)絡(luò),即ZigBee本地無線通訊和NB-IoT遠程聯(lián)網(wǎng)通訊,將火情現(xiàn)場數(shù)據(jù)上傳至云平臺;*后,云平臺對數(shù)據(jù)進行相應(yīng)運算與處理,運用智能識別算法,實現(xiàn)火災(zāi)預(yù)警?;谠撓到y(tǒng),可及時預(yù)警和提前預(yù)判火情現(xiàn)場,減少人員傷亡和財產(chǎn)損失。
【關(guān)鍵詞】電氣火災(zāi)預(yù)警,ZigBee,NB-IoT,智能識別算法
0引言
近年來,我國電氣火災(zāi)多發(fā),造成重大人員傷亡和財產(chǎn)損失。據(jù)統(tǒng)計,2020年,因違反電氣安裝使用規(guī)定引發(fā)的火災(zāi)共8.5萬起,占總數(shù)的33.6%,重特大火災(zāi)中電氣火災(zāi)占比高達55.4%,目前,已有一些電氣火災(zāi)預(yù)警問題的相關(guān)研究:葉研等研究了基于CAN總線的實驗樓火災(zāi)預(yù)警系統(tǒng),將數(shù)據(jù)通過CAN總線發(fā)送到控制部分完成數(shù)據(jù)處理,提高了火災(zāi)預(yù)警系統(tǒng)的可靠性和反饋速度;張夢媛設(shè)計了一款基于物聯(lián)網(wǎng)技術(shù)的無線火災(zāi)智能預(yù)警系統(tǒng),采用ZigBee協(xié)議,利用各傳感器進行檢測,通過蜂窩移動通信技術(shù)將火災(zāi)情況發(fā)送至消防站,達到火災(zāi)預(yù)警的目的,于蘭等研究了基于神經(jīng)網(wǎng)絡(luò)技術(shù)的電氣火災(zāi)預(yù)警系統(tǒng),利用BP神經(jīng)網(wǎng)絡(luò)判斷電氣火災(zāi)是否發(fā)生故障,增強了電氣火災(zāi)系統(tǒng)的預(yù)警能力。但當前電氣火災(zāi)預(yù)警系統(tǒng)仍存在一些不足,例如,傳感器采集參數(shù)不夠全面,影響評價結(jié)果;使用多個不同類型的傳感器采集數(shù)據(jù),但這些參量之間部分或全部存在非線性依賴關(guān)系,單純通過這些數(shù)值的判jue進行報警不夠科學智能決策不夠完善等。本文提出一種新型電氣火災(zāi)預(yù)警系統(tǒng),通過多個參量采集模塊,將采集到的現(xiàn)場火情數(shù)據(jù)發(fā)送給參量匯集模塊;數(shù)據(jù)傳輸模塊(含ZigBee協(xié)調(diào)器)接收參量匯集模塊(即ZigBee終端節(jié)點)發(fā)送的有關(guān)數(shù)據(jù),再通過NB-IoT模塊將數(shù)據(jù)上傳給云平臺,由此構(gòu)成兩級制無線通信物聯(lián)網(wǎng)架構(gòu)。云平臺對傳感器采集到的多個變量參數(shù)進行融合分析,建立火災(zāi)狀態(tài)與多變量參數(shù)之間的非線性數(shù)學模型?;谠撃P?,根據(jù)多變量數(shù)據(jù),計算得出火災(zāi)發(fā)生的概率,從而達到預(yù)警的目的。
1系統(tǒng)整體設(shè)計
系統(tǒng)整體結(jié)構(gòu)如圖1所示,由參量采集模塊、參量匯集模塊、數(shù)據(jù)傳輸模塊、云平臺及客戶端組成。參量采集模塊負責連接傳感器,感知火情現(xiàn)場;參量匯集模塊負責匯集與上傳火情現(xiàn)場數(shù)據(jù);數(shù)據(jù)傳輸模塊作為通信橋梁,負責參量匯集模塊與云平臺之間的信息傳遞;云平臺則負責運算及處理數(shù)據(jù)信息,計算得出火災(zāi)發(fā)生的概率,并發(fā)送信息至客戶端,客戶端可相應(yīng)呈現(xiàn)火災(zāi)預(yù)警信息。
2硬件構(gòu)成
單參量采集模塊、參量匯集模塊硬件構(gòu)成如圖2所示?;鹎楝F(xiàn)場數(shù)據(jù)的采集由單參量采集模塊和參量匯集模塊共同完成。
參量采集模塊包括傳感器、信號處理電路、MCU,并通過工業(yè)標準接口(232、485、I2C、SPI等)與參量匯集模塊連接。根據(jù)火情現(xiàn)場情況,選取煙霧、溫度、火焰、電參數(shù)(包括入戶母線電壓、電流、有功功率、無功功率或功率因數(shù))等傳感器進行數(shù)據(jù)采集,經(jīng)信號處理電路處理后送入MCU,再通過標準接口。根據(jù)約定的通訊協(xié)議,將火情現(xiàn)場數(shù)據(jù)傳輸給參量匯集模塊。參量匯集模塊以無線MCU(ZigBee終端節(jié)點)為核心。通過標準接口與單參量采集模塊有線連接,接收單參量采集模塊發(fā)送的火情現(xiàn)場數(shù)據(jù),再通過ZigBee網(wǎng)絡(luò)轉(zhuǎn)發(fā)給
ZigBee協(xié)調(diào)器。數(shù)據(jù)傳輸模塊結(jié)構(gòu)如圖3所示,主要由ARM微處理器.ZigBee協(xié)調(diào)器以及NB-IoT模塊組成。
各參量匯集模塊作為ZigBee終端節(jié)點加入網(wǎng)絡(luò),ZigBee協(xié)調(diào)器接收多個參量匯集模塊上傳的火情現(xiàn)場數(shù)據(jù)。ARM微處理器負責統(tǒng)籌處理數(shù)據(jù)本地傳輸、遠程傳輸,以及相應(yīng)的解析及轉(zhuǎn)換,NB-IoT模塊將火情現(xiàn)場數(shù)據(jù)等信息遠程發(fā)送至云平臺進行處理。
3軟件設(shè)計
3.1數(shù)據(jù)采集
數(shù)據(jù)采集過程完成對火情現(xiàn)場數(shù)據(jù)的采集,其軟件流程如圖4所示。
初始化完成后,參量采集模塊需要通過相應(yīng)的傳感器采集現(xiàn)場數(shù)據(jù),處理完相關(guān)數(shù)據(jù)后,將數(shù)據(jù)傳輸至參量匯集模塊。
3.2數(shù)據(jù)傳輸
數(shù)據(jù)傳輸是指將參量匯集模塊接收到的多組火情現(xiàn)場數(shù)據(jù)上傳至云平臺的過程,其軟件流程如圖5所示。
ZigBee協(xié)調(diào)器檢測周圍網(wǎng)絡(luò)狀態(tài),建立網(wǎng)絡(luò)。參量匯集模塊作為終端節(jié)點入網(wǎng)后,將數(shù)據(jù)轉(zhuǎn)發(fā)至ZigBee協(xié)調(diào)器,協(xié)調(diào)器接收到上傳的火情現(xiàn)場數(shù)據(jù),通過串口通信將數(shù)據(jù)發(fā)送給ARM微處理器,ARM微處理器對數(shù)據(jù)解析、打包后,由NB-IoT模塊上傳至云平臺完成數(shù)據(jù)處理,*終實現(xiàn)火災(zāi)預(yù)警。
3.3數(shù)據(jù)處理
數(shù)據(jù)處理是指在云平臺對上傳的火情現(xiàn)場數(shù)據(jù)進行運算與處理的過程,其軟件流程如圖6所示。
云平臺完成初始化后,首先接收火災(zāi)監(jiān)測現(xiàn)場的位置以及火情現(xiàn)場數(shù)據(jù)等信息,運算與處理上傳數(shù)據(jù)中的多個變量,隨后建立火災(zāi)現(xiàn)場狀態(tài)與多變量參數(shù)之間的非線性數(shù)學模型?;谠撃P?,依據(jù)采集的多變量數(shù)據(jù),通過智能算法計算得出火災(zāi)發(fā)生的概率,然后發(fā)送火災(zāi)預(yù)警信息至客戶端。
4智能識別算法
本文提出的火災(zāi)預(yù)警智能識別算法,可融合分析傳感器采集的多個變量,基于半監(jiān)督學習方法,自動實現(xiàn)變量分類,并通過求解算法,建立火災(zāi)現(xiàn)場狀態(tài)與多變量參數(shù)之間的非線性數(shù)學模型?;谠撃P?依據(jù)采集的多變量數(shù)據(jù),*后得出火災(zāi)發(fā)生的概率,達到預(yù)警的目的。算法包含兩部分。
(1)基于稀疏編碼的結(jié)構(gòu)特征提取方法
其對應(yīng)的學習網(wǎng)絡(luò)結(jié)構(gòu)如圖7所示。
記樣本數(shù)量為N,樣本維度為D,則第i個樣本可表示為ai=,則自動編碼器參數(shù)訓練的目標為輸出數(shù)據(jù)接近輸入數(shù)據(jù),即
:
式中=為輸入樣本集合狙為相應(yīng)的輸出值集合。
(2)多類SVM的實現(xiàn)
SVM在解決小樣本、非線性以及高緯模式識別問題中具有優(yōu)勢,但傳統(tǒng)的SVM僅用于解決兩類分類問題,不能直接用于多類分類。本文采用一對一訓練策略來實現(xiàn)多類SVM的分類,為每類構(gòu)造一個SVM,通過粒子群(PSO)算法實現(xiàn)對SVM參數(shù)的優(yōu)化,并采用稀疏自編碼器獲取的特征參數(shù)訓練多類SVM,從而實現(xiàn)完整的智能識別算法。云平臺對各參量匯集模塊傳來的數(shù)據(jù)進行智能計算與分析,判斷當前是否有預(yù)警發(fā)生,若有,云平臺首先通過嵌入式網(wǎng)關(guān)的IMEI碼,定位當前發(fā)生預(yù)警的監(jiān)測點位置。再通過該監(jiān)測點對應(yīng)的ZigBee網(wǎng)絡(luò),定位該監(jiān)測點區(qū)域內(nèi)發(fā)生預(yù)警的參量匯集模塊對應(yīng)的位置。此外,云平臺還可判斷出當前預(yù)警的嚴重等級,可保證在多個監(jiān)測點同時發(fā)生預(yù)警時,工作人員可根據(jù)嚴重等級,合理安排處理順序,云平臺可將這些定位及預(yù)警等級信息推送到計算機或智能手機客戶端上,工作人員可接收到推送的預(yù)警信息,及時采取相應(yīng)的處理措施。
5安科瑞電氣火災(zāi)監(jiān)控系統(tǒng)
(1)概述
Acre1-6000電氣火災(zāi)監(jiān)控系統(tǒng),是根據(jù)中心的消防電子產(chǎn)品試驗認證,并且均通過嚴格的EMC電磁兼容試驗,保證了該系列產(chǎn)品在低壓配電系統(tǒng)中的安全正常運行,現(xiàn)均已批量生產(chǎn)并在全國得到廣泛地應(yīng)用。該系統(tǒng)通過對剩余電流、過電流、過電壓、溫度和故障電弧等信號的采集與監(jiān)視,實現(xiàn)對電氣火災(zāi)的早期預(yù)防和報警,當必要時還能聯(lián)動切除被檢測到剩余電流、溫度和故障電弧等超標的配電回路;并根據(jù)用戶的需求,還可以滿足與AcreIEMS企業(yè)微電網(wǎng)管理云平臺或火災(zāi)自動報警系統(tǒng)等進行數(shù)據(jù)交換和共享。
(2)應(yīng)用場合
適用于智能樓宇、高層公寓、賓館、飯店、商廈、工礦企業(yè)、國家重點消防單位以及石油化工、文教衛(wèi)生、金融、電信等領(lǐng)域。
(3)系統(tǒng)結(jié)構(gòu)
(4)系統(tǒng)功能
監(jiān)控設(shè)備能接收多臺探測器的剩余電流、溫度信息,報警時發(fā)出聲、光報警信號,同時設(shè)備上紅色“報警"指示燈亮,顯示屏指示報警部位及報警類型,記錄報警時間,聲光報警一直保持,直至按設(shè)備的“復位"按鈕或觸摸屏的“復位"按鍵遠程對探測器實現(xiàn)復位。對于聲音報警信號也可以使用觸摸屏“消聲"按鍵手動消除
當被監(jiān)測回路報警時,控制輸出繼電器閉合,用于控制被保護電路或其他設(shè)備,當報警消除后,控制輸出繼電器釋放。
通訊故障報警:當監(jiān)控設(shè)備與所接的任一臺探測器之間發(fā)生通訊故障或探測器本身發(fā)生故障時,監(jiān)控畫面中相應(yīng)的探測器顯示故障提示,同時設(shè)備上的黃色“故障"指示燈亮,并發(fā)出故障報警聲音。電源故障報警:當主電源或備用電源發(fā)生故障時,監(jiān)控設(shè)備也發(fā)出聲光報警信號并顯示故障信息,可進入相應(yīng)的界面查看詳細信息并可解除報警聲
當發(fā)生剩余電流、超溫報警或通訊、電源故障時,將報警部位、故障信息、報警時間等信息存儲在數(shù)據(jù)庫中,當報警解除、排除故障時,同樣予以記錄。歷史數(shù)據(jù)提供多種便捷、快速的查詢方法。
(5)配置方案
應(yīng)用場合 | 型號 | 產(chǎn)品照片 | 功能 |
消防控制室 | Acrel-6000/B | 適用于1~4條通信總線*多可連接256個探測器,可適用于壁掛安裝的場所。 | |
Acrel-6000/Q | 適用于大型組網(wǎng),壁掛式監(jiān)控主機數(shù)量較多且需集中查看的場所,主要監(jiān)測壁掛主機信息。 | ||
一、二級 低壓配電 | ARCM200L-Z2 | 三相(I、U、kW、Kvar、kWh、Kvarh、Hz、cos中),視在電能、四象限電能計量,單回路剩余電流監(jiān)測,4路溫度監(jiān)測,2路繼電器輸出,4路開關(guān)量輸入,事件記錄,內(nèi)置時鐘,點陣式LCD顯示,2路獨立RS485/Modbus通訊 | |
ARCM200L-J8 | 8路剩余電流監(jiān)測,2路繼電器輸出,4路開關(guān)量輸入,事件記錄,內(nèi)置時鐘,點陣式LCD顯示,1路RS485/Modbus通訊 | ||
ARCM300-J1 | 1路剩余電流監(jiān)測,4路溫度監(jiān)測,1路繼電器輸出,事件記錄,LCD顯示,1路RS485/Modbus通訊 | ||
AAFD-□ | 檢測末端線路的故障電弧,485通訊,導軌式安裝。 | ||
ASCP200-□ | 短路限流保護、過載保護、內(nèi)部超溫限流保護、過欠壓保護、漏電監(jiān)測、線纜溫度監(jiān)測,1路RS485通訊,1路GPRS或NB無線通訊,額定電流為0-40A可設(shè)。 | ||
短路限流保護、過載保護、內(nèi)部超溫限流保護、過欠壓保護、漏電監(jiān)測、線纜溫度監(jiān)測,1路RS485通訊,1路NB或4G無線通訊,額定電流為0-63A可設(shè)。 | |||
配套附件 | AKH-0.66 | 測量型互感器,采集交流電流信號 | |
AKH-0.66/L | 剩余電流互感器,采集剩余電流信號 | ||
ARCM-NTC | 溫度傳感器,采集線纜或配電箱體溫度 |
6結(jié)語
本文利用參量采集模塊采集火情現(xiàn)場數(shù)據(jù)并上傳至參量匯集模塊,通過ZigBee網(wǎng)絡(luò)和NB-IoT模塊將數(shù)據(jù)上傳至云平臺,云平臺融合分析傳感器采集到的多個變量,并通過求解算法,得出火災(zāi)發(fā)生的概率并將其發(fā)送至客戶端,據(jù)此提醒工作人員及時采取措施。基于該系統(tǒng),及時預(yù)警火情現(xiàn)場,提前預(yù)判。從而減少人員傷亡和財產(chǎn)損失。
參考文獻
[1] 閆傳令,李紅艷.冶山礦業(yè)公司“六大系統(tǒng)"的建設(shè)及應(yīng)用[J]. 現(xiàn)代礦業(yè),2014,30(12):186-187.
[2] 張紀飛.煤礦井下自動化供水索統(tǒng)的設(shè)計應(yīng)用[J].山東煤炭科技,2021,39(7):135-137.
[3] 馬莉.煤礦供水系統(tǒng)優(yōu)化改造的研究[J].當代化工研究,2021(5) :92-93.
[4] 劉文峰,孟祥忠.煤礦深井多水平恒壓供水系統(tǒng)的研究與應(yīng)用[J].工業(yè)儀表與自動化裝置,2020(4):25-28+47.
[5] 孫派,吳志強,蘇瑞.礦井供水管網(wǎng)在線監(jiān)測自控技術(shù)研究實踐[J].中小企業(yè)管理與科技(下旬刊),2013(4):240.
[6]魏立明,楊坤,陳妍希.建筑電氣火炎預(yù)警系統(tǒng)的綜述研究[J]. 吉林建筑大學學報,2017,34(3):112-115.
[7] 藍雄,劉勝永.軸承故障稀疏編碼特征提取與多分類SVM識別[J].機械設(shè)計與制造,2020(10):182-186.
[8]周文潮,周子涵,靳沖.基于SVM的變壓器局部放電故障診斷研究[J].鐵路通信信號工程技術(shù),2022,19(S1):137-140.
[9] 范婕,許欣怡,周詩崠等.基于PSO-SVM的天然氣水合物生成條件預(yù)測[J].天然氣化工—C1化學與化工,2022,47(5):171-176.
[10]龍興林,俞鑒鋒,劉學勇,方永達.一種新型電氣火災(zāi)預(yù)警系統(tǒng)研究 [A].傳感檢測與儀器儀表.2023(13)-1133
[11] 安科瑞企業(yè)微電網(wǎng)設(shè)計與應(yīng)用手冊2022.05版.
作者簡介
任運業(yè),男,安科瑞電氣股份有限公司,主要研究方向為電氣火災(zāi)系統(tǒng)的設(shè)計與應(yīng)用。